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Abstract

Dynamic models are important and realistic in many settings, notably reliability and survival
analysis. Two general classes of dynamic models are described, some probabilistic properties
presented, inferential methods indicated, and their applicability discussed.

1 Introduction

Consider a system which is being monitored for the occurrence of events of interest over some observation
period. Such a system could be a p-component coherent structure with structure function φ in a reliability
or engineering setting, where the events of interest are component failures and eventually system failure.
Or, the system could be a subject in a biomedical study, and of interest are the successive occurrences of
some recurrent event, such as for example hospitalization, onset of depression, etc. Or, the system could be
a married couple in a sociological study to examine divorces, and of interest are the recurrences of major
disagreements in the marriage.

In developing stochastic models for event occurrences in such systems, dynamic models become highly
appropriate and more realistic. In such models the impact of actions or interventions which are undertaken
as the monitoring progresses, with such actions possibly dictated by the accrued history of the system, can be
incorporated in the model. Dynamic models could also incorporate the possible effects of increasing number
of event occurrences, and take into account the impact of possibly time-varying covariate processes. For
example, when dealing with coherent structures in reliability and engineering settings, component failures
may have the effect of increasing the load on the remaining functioning components arising from the change
in the effective structure function, hence the failure intensities of components are best specified through
dynamic models. In biomedical settings and reliability settings, when an event occurs, certain interventions
are performed, and such actions have the effect of changing the intensities of the next event occurrence.

Dynamic models are best specified through failure intensities, and so are often stated in terms of hazard
rate functions. In contrast to the usual static modelling approach, which when specifying a failure model at
some time s, asks the following question at the time origin: “What is the probability that an event will occur
in the infinitesimal time interval [s, s + ds)?” in dynamic modelling, the underlying modelling approach is
conditional in that one instead asks the question: “Given the history of the system just before time s, what
is the conditional probability that an event will occur in the infinitesimal time interval [s, s+ ds)?” Because
the modelling approach is conditional, then it is able to seamlessly incorporate in the model the impact of
performed actions and interventions, as well as the situational and environmental changes, that dynamically
occur during the monitoring of the system.

Many works in the reliability and engineering settings dealing with dynamic models have dealt with
the modelling aspect and the determination of the stochastic and probabilistic properties of such models.
There has been a dearth of work dealing with statistical inference issues for such dynamic models. In
the survival analysis setting where dynamic models are typically associated with biomedical studies and
clinical trials, there has been work dealing with inference issues for such models, though for general dynamic
models, inference procedures are still incomplete. In this talk, aside from discussing dynamic models and



their properties, focus will also be on methods for making inference about the model parameters, with the
inference to be based on data arising from the monitoring of a sample of study systems or units.

We outline the major portions of this abstract. In Section 2 we present the mathematical setting which
will facilitate the formal description of dynamic models, and describe three specific dynamic models. In
Section 3 we provide some properties of the dynamic models described in Section 2, and in Section 4 we
indicate inference issues regarding dynamic model parameters. The issue of the practical applicability of the
models will be mentioned in Section 5, and finally in Section 6 we indicate open research problems for these
dynamic models.

2 Dynamic Models

To formally describe the dynamic models of interest, given a system or unit under study, let T = [0, τ ] be
the monitoring period, with τ possibly random. Define the processes {(N †(s), Y †(s)) : s ∈ T } according
to N †(s) = number of events that occurred in [0, s], and Y †(s) = I{the system is under observation at s},
where I{A} is the indicator function of event A. We also define on an appropriate probability space (Ω,F , P )
a filtration {Fs : 0 ≤ s ≤ τ}, such that Fs represents the σ-field containing all information about the system
that have accrued over the time period [0, s]. In particular, N † and Y † are adapted to this filtration. A
dynamic model is specified by providing the intensity process of N † defined for every s ∈ T via

α(s) = lim
h↓0

1

h
P
{

N†((s+ h)−)−N †(s−) ≥ 1|Fs−
}

. (1)

We describe two general classes of dynamic models. The first one, which is relevant for coherent systems
in reliability and engineering, was introduced in Hollander and Peña (1995); while the second one, which
perhaps is more relevant in biomedical and public health settings, was introduced in Peña and Hollander
(2004).

Consider a coherent system with p components and structure function φ. Let Zp = {1, 2, . . . , p}, and
denote by P the power set of Zp. Let Kφ ⊆ P be the collection of minimal cut sets of φ. A set J ∈ P is
defined to be φ-absorbing if there exists a K ∈ Kφ with K ⊆ J . Let Qφ be the collection of φ-absorbing sets
of φ, and by Q0

φ = P \ Qφ the collection of φ-non-absorbing sets of φ. We now describe the first dynamic

model. Let λ0(·) be a hazard rate function, and for each J ∈ Q0
φ, let {αi[J ], i ∈ I

c} be a set of non-negative
real numbers. For each s ≥ 0, denote by F (s) the set of component indices which are non-functioning at
time s−. With Y †(s) = I{τ ≥ s}, the intensity process of the dynamic model is specified according to

α(s) = Y †(s)





∑

J∈Q0

φ

I{F (s) = J}
∑

j∈Jc

αj [J ]



λ0(s). (2)

This model is a special case of the general model introduced in Hollander and Peña (1995). If the system is a
p-component parallel system soQφ = Zp and for any state vector (y1, y2, . . . , yp) ∈ {0, 1}

p, φ(y1, y2, . . . , yp) =
∨pj=1yj , and if αj [J ] = γ|J| where |J | is the cardinality of set J and {γj ≡ γ[j] : j = 0, 1, . . . , p − 1} are
non-negative reals with γ0 ≡ 1, then (2) simplifies to

α(s) = Y †(s)[p−N †(s−)]γ[N †(s−)]λ0(s), (3)

which is the equal load-sharing model for a parallel system considered in Kvam and Peña (2004).
Next we describe a general dynamic model for recurrent events which takes into account the impact

of performed interventions after each event occurrence, the effects of accumulating event occurrences and
relevant covariate processes, and the effect of an unobserved latent variable, called a frailty, which induces
association among the inter-event times. This model was proposed in Peña and Hollander (2004), and further
studied in Peña, Slate and Gonzalez (2003). To specify the intensity process for this model, we suppose that
a vector of predictable covariate processes {X(s) : s ≥ 0} is observed, and we also require an observable and



predictable effective age process {E(s) : s ≥ 0}, which is possibly specified dynamically. Conditional on the
frailty variable Z, which is assumed to follow a distribution H(·|ξ), the intensity process is given by

α(s|Z) = Z Y †(s)λ0[E(s)] ρ[N
†(s−);α]ψ[β′X(s)], (4)

where λ0(·) is a hazard rate function, ρ(·;α) is a non-negative function with ρ(0;α) = 1, and ψ(·) is a non-
negative link function. In this model, the effective age process encodes the impact of performed interventions
after each event occurrence. If minimal repair or intervention is performed after each event occurrence, this
effective age process takes the form E(s) = s, whereas if perfect repair or intervention is performed after
each event occurrence, then this is the backward recurrence time given by E(s) = s − SN†(s−), where
0 ≡ S0 < S1 < S2 < . . . are the successive calendar times of event occurrences. Many other forms of E(·)
are possible such as that induced by the minimal repair model of Brown and Proschan (1983) and Block,
Borges and Savits (1985). The effect of accumulating event occurrences is contained in the ρ(·;α) function,
and a simple form for this is ρ(k;α) = αk; whereas the covariate effect is encoded in the link function ψ(·),
which is usually taken to be ψ(v) = exp(v). The frailty distribution H(·; ξ) could have many forms, but in
many cases it is assumed to be a gamma distribution with mean 1 and variance 1/ξ. The baseline hazard
rate function λ0(·) could either be parametrically specified, or could be nonparametrically specified. The
latter may be more appropriate in biomedical and public health applications, whereas the former is more
appropriate in reliability and engineering applications. As discussed in Peña and Hollander (2004) and in
Peña, Slate and Gonzalez (2003), the class of models specified by (4) includes as special cases many existing
models currently in use in reliability and survival analysis.

3 Some Properties

Probabilistic properties of dynamically-specified models are certainly harder to obtain due to the changing
intensities as time evolves. Nevertheless, in some special cases, concrete results are possible. Just to provide
a flavor for such results, consider a p-component parallel system with intensity process specified in (2). We
present the distribution of the time to the kth event as obtained in Hollander and Peña (1995). To state
this result, we need to introduce notation. For a collection a = {ai : i ∈ C} of distinct real numbers, define

a• =
∑

i∈C

ai and ρi(aj ; C) =
∏

j∈C; j 6=i

aj
aj − ai

,∀i ∈ C.

In the notation ρi(aj ; C), C denotes the set of possible values of the index j. We also utilize the notation
Ck = {0, 1, . . . , k} for k = 0, 1, 2, . . .. Following earlier notation, let Sk be the time of the kth event for this
system, which corresponds to the kth component failure. The following result is a re-statement of Theorem
5.1 in Hollander and Peña (1995); in there, more general distributional results from which the result below
was derived, as well as specific results for series-parallel systems, were also presented.

Theorem 1 For a p-component parallel system following a dynamic model with intensity process in (2),

if the collection
{

α•[J ] ≡
∑

j∈Jc αj [J ] : J ⊂ Zp

}

satisfies the condition that |J | = k ⇒ α•[J ] = αk, (k =

0, 1, . . . , p), with αk 6= αl whenever k 6= l, then for k = 1, 2, . . . , p and with Λ0(s) =
∫ s

0
λ0(t)dt,

P{Sk > s} =

k−1
∑

i=0

ρi(αj ; Ck−1) exp{−αiΛ0(s)}.

4 Inference Methods

Suppose that a sample of n systems or units governed by the dynamic models described above are monitored,
with the ith system followed over [0, τi]. Then it becomes of interest to make inference about the unknown
model parameters. Having estimates of these model parameters will enable us to perform predictions as
well as aid in making practical decisions such as, for example, performing preventive maintenance or doing



some interventions. Inference methods for these dynamic models become more elaborate and complicated,
especially if the baseline hazard rate function λ0(·) is nonparametrically specified. The major tools that
enable us to do inference is the construction of the likelihood function via Jacod’s (1975) formula (see also
Andersen, Borgan, Gill and Keiding (1993)); the fact that with respect to calendar time there is a martingale
structure to {M †(s) = N †(s)−

∫ s

0
α(v)dv : s ≥ 0}; and, to deal with the computational complexity, through

the use of the EM algorithm of Demspter, Laird and Rubin (1977).
In Kvam and Peña (2004), the estimation of the load-share parameters {γj : j = 0, 1, . . . , p − 1}, the

baseline hazard Λ0 =
∫

λ0, and the associated baseline survivor function S0 =
∏

[1 − dΛ0] were developed
for the model in (3). Asymptotic properties of the estimators were also obtained. For the general recurrent
event model specified in (4), estimation procedures for the model parameters, which are ξ in the frailty
distribution, α in the ρ(k;α) component, β in the link function, and for Λ0 and S0, were developed in Peña,
Slate and Gonzalez (2003). Properties of the estimators were ascertained through computer simulation
studies. In the talk, some of these inference methods developed in these papers, as well as in other papers,
will be discussed.

5 Applicability of Models

The applicability of these dynamic models is still in its infancy. Nevertheless, by virtue of the fact that they
are more appropriate models of real situations, their practical promise is quite appealing. In the talk, certain
applications of these dynamic models to real data sets will be illustrated. Through these illustrations the
importance, as well as existing limitations, of these dynamic models will be pinpointed.

6 Some Open Problems

Because these dynamic models are still new and currently the subject of active research, many open research
problems abound. Some of these open research problems will be described and posed in the talk.
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